Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

نویسندگان

  • N Tzourio-Mazoyer
  • B Landeau
  • D Papathanassiou
  • F Crivello
  • O Etard
  • N Delcroix
  • B Mazoyer
  • M Joliot
چکیده

An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute (MNI) (D. L. Collins et al., 1998, Trans. Med. Imag. 17, 463-468) was performed. The MNI single-subject main sulci were first delineated and further used as landmarks for the 3D definition of 45 anatomical volumes of interest (AVOI) in each hemisphere. This procedure was performed using a dedicated software which allowed a 3D following of the sulci course on the edited brain. Regions of interest were then drawn manually with the same software every 2 mm on the axial slices of the high-resolution MNI single subject. The 90 AVOI were reconstructed and assigned a label. Using this parcellation method, three procedures to perform the automated anatomical labeling of functional studies are proposed: (1) labeling of an extremum defined by a set of coordinates, (2) percentage of voxels belonging to each of the AVOI intersected by a sphere centered by a set of coordinates, and (3) percentage of voxels belonging to each of the AVOI intersected by an activated cluster. An interface with the Statistical Parametric Mapping package (SPM, J. Ashburner and K. J. Friston, 1999, Hum. Brain Mapp. 7, 254-266) is provided as a freeware to researchers of the neuroimaging community. We believe that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain in which deformations are well known. However, this tool does not alleviate the need for more sophisticated labeling strategies based on anatomical or cytoarchitectonic probabilistic maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas

An alternative parcellation of the orbitofrontal cortex is described for the automated anatomical labeling atlas of Tzourio-Mazoyer et al. (2002) (Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273-289). The new parcellation of the orbitofrontal cortex follows the description provided by Chiavara...

متن کامل

Whole-brain anatomical networks: Does the choice of nodes matter?

Whole-brain anatomical connectivity in living humans can be modeled as a network with diffusion-MRI and tractography. Network nodes are associated with distinct grey-matter regions, while white-matter fiber bundles serve as interconnecting network links. However, the lack of a gold standard for regional parcellation in brain MRI makes the definition of nodes arbitrary, meaning that network node...

متن کامل

Noninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI

Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...

متن کامل

Assessment of the impact of applying attenuation correction on the accuracy of activity recovery in Tc99m-ECD brain SPECT of healthy subject using Statistical Parametric Mapping (SPM)

Introduction: Photon attenuation in tissues is the primary physical degrading factor limiting both visual qualitative interpretation and quantitative analysis capabilities of reconstructed Single Photon Emission Computed Tomography (SPECT) images. The aim of present study was to investigate the effect of attenuation correction on the detection of activation foci following statistical analysis w...

متن کامل

Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: Application to determine iron content in deep gray matter structures

The purpose of this paper is to extend the single-subject Eve atlas from Johns Hopkins University, which currently contains diffusion tensor and T1-weighted anatomical maps, by including contrast based on quantitative susceptibility mapping. The new atlas combines a "deep gray matter parcellation map" (DGMPM) derived from a single-subject quantitative susceptibility map with the previously esta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2002